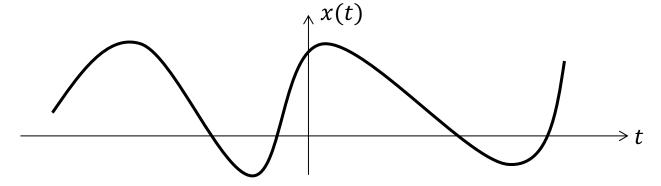


€ENC

Outline


- Introduction to Signals, Systems and Transforms
 - Signal Definition
 - System definition
 - Continuous-time vs. Discrete-time
 - Analog vs. Digital

Signal Definition

- □ A signal is a mathematical function of one or more independent variables which conveys information on the nature of a physical phenomenon.
- □ For a function f, in the expression $f(t_1, t_2, ..., t_n)$, each of the $\{t_k\}$ is called an independent variable, while the function value itself is referred to as a dependent variable.

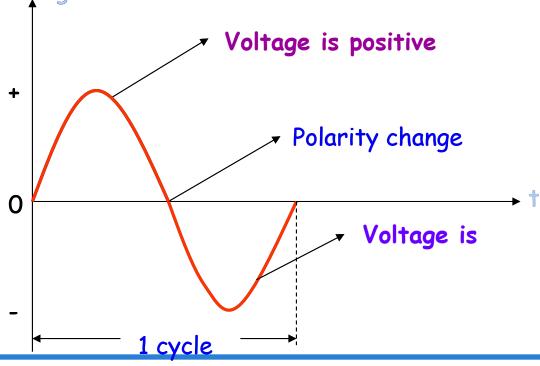
Examples:

- ■Temperature
- □Voltage or current in an electronic circuit
- □Position, velocity, or acceleration of an object
- □A force or torque in a mechanical system

Cont...

- $\square x(t)$: signal of one independent variable t (e.g. time), x is called dependent variable.
- □A common convention is to refer to the independent variable as time, although may in fact not.

 $\Box f(t, x, y, z)$ is a signal of four independent variables.



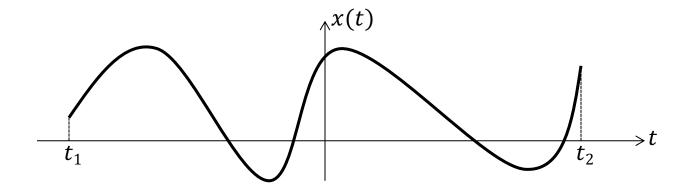
Modeling

- □Physical signal $\stackrel{Modeling}{=\!=\!=\!=\!=}$ Mathematical function
- Examples:
 - Temperature of the room
 - □ Potential difference between two points.

AC voltage

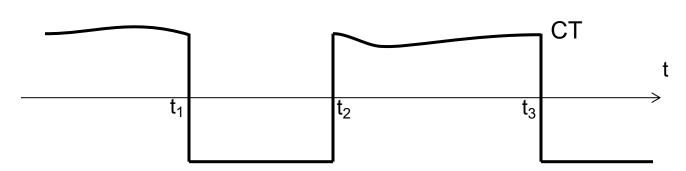
Electrical Engineering Department

Classification of Signals


- □ Number of independent variables (i.e., dimensionality):
 - □ A signal with *one* independent variable is said to be one dimensional (e.g., audio).
 - □ A signal with *more than one* independent variable is said to be multidimensional (e.g., image).
- □ Continuous or discrete independent variables:
 - □ A signal with *continuous* independent variables is said to be continuous time (CT) (e.g., voltage waveform).
 - □ A signal with *discrete* independent variables is said to be discrete time (DT) (e.g., stock market index).
- Continuous or discrete dependent variable:
 - □ A signal with a *continuous* dependent variable is said to be continuous valued (e.g., voltage waveform).
 - □ A signal with a *discrete* dependent variable is said to be <u>discrete</u> valued (e.g., digital image).
- □ A *continuous-valued CT* signal is said to be analog (e.g., voltage waveform).
- □ A *discrete-valued DT* signal is said to be digital (e.g., digital a<u>u</u>dio).

Continuous-time vs. Discrete-time

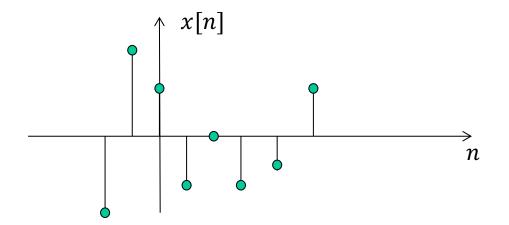
- The independent variable may be either continuous or discrete.
- □Continuous-time signals: defined at every instant of time over some time interval.
 - x(t) where t can take any real value.
 - x(t) may be 0 for a given range of values of t.



Values for x may be real or complex

Cont..

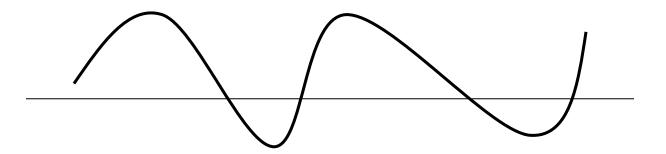
- $\Box t_1$, t_2 , and t_3 are points of discontinuity.
- □ CT is defined at a continuum points in time $\Rightarrow t \in \mathbb{R}$, \mathbb{R} : set of real numbers.
- □A CT signal is not necessarily to be continuous at every point in time.

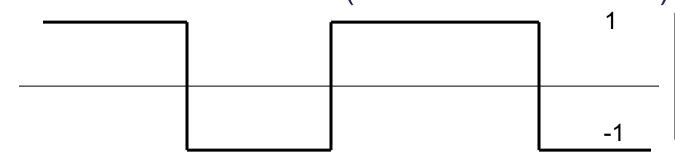


Cont...

- □Discrete-time signals: defined at discrete points in time and not between them.
- □The independent variable takes only a discrete set of values.

$$x[n]$$
 where $n \in \mathbb{Z} = \{...-3, -2, -1, 0, 1, 2, 3 ...\}$


 \square Values of x may be real or complex


Analog vs. Digital

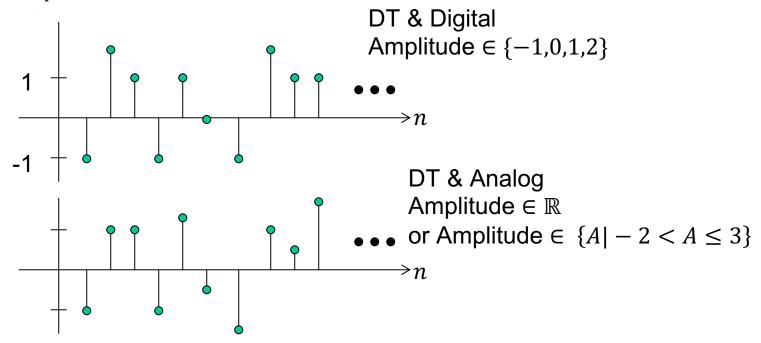
- □ The signal amplitude may be either continuous or discrete
- □ At each time value, analog signal amplitude takes real or complex value (a.k.a. continuous-valued)

Analog continuous-time signal

□ Digital signal amplitude takes values from a discrete set "finite number of values" (a.k.a. discrete-valued)

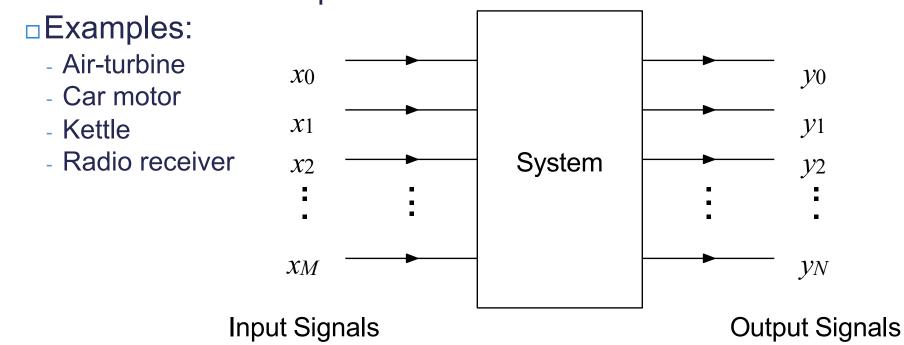
Digital continuous-time signal

Reminder:


- Finite set: has a beginning and end and the number of elements is countable.
 - Every finite set is countable
 - □e.g., {-1,0,1,2}, { $x ∈ \mathbb{Z}$: -2 < x ≤ 2}
- Infinite set: does not has start or end or has both start and end but is uncountable.
 - □e.g., infinite and countable: {...,2,4,6,8},
 - $\{-1,1,3,5,7,\ldots\}, \{\ldots,2,5,8,11,14,\ldots\}.$
 - □e.g., infinite and uncountable: $\{x \in \mathbb{R}: -2 < x \le 2\}$
- If the signal's amplitude (A) is a finite set ⇒ the signal is Digital, otherwise it is Analog.

Cont..

Example:


- CT & DT: qualify the nature of the signal along the time (horizontal) axis.
- Analog & Digital: qualify the nature of the signal along the amplitude (vertical) axis.

System definition

- □ An entity that manipulates one ore more signals to accomplish a function (job), thereby yielding new signals.
- Any process or interaction of operations that transforms an input signal into an output signal with properties different from those of the input.

System Modeling

Physical System $\xrightarrow{Modeling}$ Mathematical Equations

□ Example: v(t) → i(t) + c

$$R i(t) + L \frac{di(t)}{dt} + \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau = v(t)$$

Integro-differential Equation

Classification of Systems

- □ Number of inputs:
 - \square A system with *one* input is said to be single input (SI).
 - □ A system with *more than one* input is said to be multiple input (MI).
- □ Number of outputs:
 - \square A system with *one* output is said to be single output (SO).
 - □ A system with *more than one* output is said to be multiple output (MO).
- □ Types of signals processed:
 - □ A system can be classified in terms of the *types of signals* that it processes. Consequently, terms such as the following (which describe signals) can also be used to describe systems:
 - □one-dimensional and multi-dimensional, continuous-time (CT) and discrete-time (DT), and analog and digital.
 - □ For example, a continuous-time (CT) system processes CT signals and a discrete-time (DT) system processes DT signals.

Types of Systems

Systems are classified according to the number of inputs and outputs to:

SISO: Single-Input Single-Output

System x(t)y(t)

Excitation signal

Input: I

Response signal Output: O

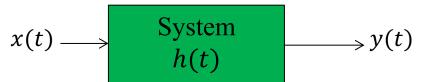
MIMO: Multi-Input Multi-Output

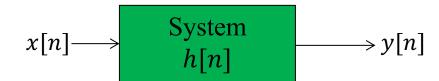
System

System

MISO: Multi-Input Single-Output

SIMO: Single-Input Multi-Output



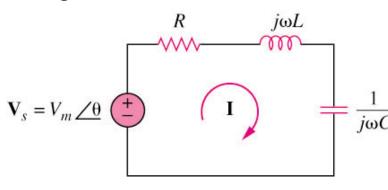


Continuous-time vs. Discrete-time system

- Systems are classified according to the type of input signals and output signals.
- Continuous-time system: all the signals are CT signals.

Discrete-time system: all the signals are DT signals.

EE330: Signals and Systems



Example: CT Signal and System

- The following RLC circuit is a straight example of a CT system
- The system can be described using the following differential equation

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C} \int_{-\infty}^{t} i(\tau)d\tau = v(t).$$

- The sinusoidal input voltage V_s is an example of a CT signal $\frac{R}{N}$
- □The output current *I* is another example of a CT signal

