

KING FAISAL UNIVERSITY COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING

Course Code / Title: BME 310 –Bio-Electronics I Semester / Year: Fall /2019

Homework Assignment #: 3 Date: 23/10/2019 Due Date: 3/11/2019

Instructor: Dr. Mohammed Morsy Farag

- 1. Find the following for a transistor in the Common-Base Configuration
 - a. Using the characteristics of Fig. P1, determine the resulting collector current if I_E =3.5 mA and V_{CB} =10 V.
 - b. Repeat part (a) for $I_E = 3.5$ mA and $V_{CB} = 20$ V.
 - c. How have the changes in V_{CB} affected the resulting level of I_C ?
 - d. On an approximate basis, how are I_E and I_C related based on the results above?

- 2.
- a. Using the characteristics of Fig. P1, determine I_C if $V_{CB} = 5$ V and $V_{BE} = 0.7$ V.
- b. Determine V_{BE} if $I_C = 5$ mA and $V_{CB} = 15$ V.
- 3. Find the following for a transistor in the Common-Base Configuration
 - a. Given α_{dc} of 0.998, determine I_C if $I_E = 4$ mA.
 - b. Determine α_{dc} if $I_E = 2.8$ mA, $I_C = 2.75$ mA and $I_{CBO} = 0.1$ μ A.
- 4. Using the characteristics of Figure P4 for a transistor in the Common-Emitter Configuration:
 - a. Find the value of I_C corresponding to $V_{BE} = +750$ mV and $V_{CE} = +4$ V.
 - b. Find the value of V_{CE} and V_{BE} corresponding to $I_C = 3.5$ mA and $I_B = 30$ μ A.

- 5. For the common-emitter characteristics of Fig. P4
 - a. Find β_{dc} at an operating point of $V_{CE} = 6$ V and $I_C = 2$ mA.
 - b. Find the value of α corresponding to this operating point.
 - c. At $V_{CE} = +6$ V, find the corresponding value of I_{CEO} .
 - d. Calculate the approximate value of I_{CBO} using β_{dc} value obtained in part (a).
- 6. Using the characteristics of Fig. P4:
 - a. Determine I_{CEO} at $V_{CE} = 10$ V.
 - b. Determine β_{dc} at $I_B = 10 \mu A$ and $V_{CE} = 10 \text{ V}$.
 - c. Using β_{dc} determined in part (b), calculate I_{CBO} .
- 7. Using the characteristics of Fig.P4, determine β_{dc} at $I_B = 25 \mu A$ and $V_{CE} = 10 \text{ V}$. Then calculate α_{dc} and the resulting level of I_E .
- 8. For a BJT in the common-emitter configuration:
 - a. Given that $\alpha_{dc} = 0.980$, determine the corresponding value of β_{dc} .
 - b. Given $\beta_{dc} = 120$, determine the corresponding value of α .
 - c. Given that $\beta_{dc} = 120$ and $I_C = 2.0$ mA, find I_E and I_B .
- 9. An input voltage of 2 V rms (measured from base to ground) is applied to the circuit of Fig. P9. Assuming that the emitter voltage follows the base voltage exactly and that $V_{be}(\text{rms}) = 0.1 \text{ V}$, calculate the circuit voltage amplification ($A_v = V_o/V_i$) and emitter current for $R_E = 1 \text{ k}\Omega$.

