Chapter 14 Partial Derivatives

Ch- 14.1 Functions of several variables

DEFINITIONS Suppose D is a set of n-tuples of real numbers $(x_1, x_2, ..., x_n)$. A **real-valued function** f on D is a rule that assigns a unique (single) real number

$$w = f(x_1, x_2, \dots, x_n)$$

to each element in D.

Domain and range

- The set D is the function's domain.
- The set of w- values taken by f is the function's range.
- The symbol w is the **dependent variable** of f.

f is said to be the function of the n-th independent variables x_1 to x_n

EXAMPLE 1 (a) These are functions of two variables. Note the restrictions that may apply to their domains in order to obtain a real value for the dependent variable z.

Function	Domain	Range
$z = \sqrt{y - x^2}$	$y \ge x^2$	$[0,\infty)$
$z = \frac{1}{xy}$	$xy \neq 0$	$(-\infty,0)\cup(0,\infty)$
$z = \sin xy$	Entire plane	[-1, 1]

(b) These are functions of three variables with restrictions on some of their domains.

Function	Domain	Range
$w = \sqrt{x^2 + y^2 + z^2}$	Entire space	$[0,\infty)$
$w = \frac{1}{x^2 + y^2 + z^2}$	$(x, y, z) \neq (0, 0, 0)$	$(0,\infty)$
$w = xy \ln z$	Half-space $z > 0$	$(-\infty, \infty)$

Functions of two variables

DEFINITIONS A point (x_0, y_0) in a region (set) R in the xy-plane is an interior point of R if it is the center of a disk of positive radius that lies entirely in R

A point (x_0, y_0) is a **boundary point** of R if every disk centered at (x_0, y_0) contains points that lie outside of R as well as points that lie in R. (The boundary point itself need not belong to R.)

(a) Interior point

 $\{(x, y) | x^2 + y^2 = 1\}$ Boundary of unit disk. (The unit circle.)

$$\{(x, y) | x^2 + y^2 \le 1\}$$

Closed unit disk.
Contains all
boundary points.

The interior points of a region, as a set, make up the interior of the region.

The region's boundary points make up its boundary.

The region's boundary points make up its boundary. A region is open if it consists entirely of interior points. A region is closed if it contains all its boundary points

A region in the plane is **bounded** if it lies inside a disk of fixed radius. A region is **unbounded** if it is not bounded.

EXAMPLE 2 Describe the domain of the function $f(x, y) = \sqrt{y - x^2}$.

Graphs, Level curves, Contours of functions of two variables

Graphs, and Level curves of functions of two variables

DEFINITIONS The set of points in the plane where a function f(x, y) has a constant value f(x, y) = c is called a level curve of f. The set of all points (x, y, f(x, y)) in space, for (x, y) in the domain of f, is called the **graph** of f. The graph of f is also called the **surface** f is also called the **surfa**

EXAMPLE 3 Graph $f(x, y) = 100 - x^2 - y^2$ and plot the level curves f(x, y) = 0, f(x, y) = 51, and f(x, y) = 75 in the domain of f in the plane.

Contours of functions of two variables

Definition

The curve in space in which the plane z = c cuts a surface z = f(x, y) is made up of the points that represent the function value f(x, y) = c. It is called the **contour curve** f(x, y) = c to distinguish it from the level curve f(x, y) = c in the domain of f.

A plane z = c parallel to the xy-plane intersecting a surface z = f(x, y) produces a contour curve. contour curve $f(x, y) = 100 - x^2 - y^2 = 75$ ne circle $x^2 + y^2 = 25$ in the plane z = 75.

The level curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the xy-plane.

Contours on Mt. Washington in New Hampshire. (Reproduced by permission from the Appalachian Mountain Club.)

Computer-generated graphs and level curves of typical functions of two variables.

Functions of three variable

DEFINITION The set of points (x, y, z) in space where a function of three independent variables has a constant value f(x, y, z) = c is called a **level surface** of f.

EXAMPLE 4 Describe the level surfaces of the function

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
.

The level surfaces of
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
 are concentric spheres

DEFINITIONS A point (x_0, y_0, z_0) in a region R in space is an interior point of R if it is the center of a solid ball that lies entirely in R (Figure 14.9a). A point (x_0, y_0, z_0) is a **boundary point** of R if every solid ball centered at (x_0, y_0, z_0) contains points that lie outside of R as well as points that lie inside R (Figure 14.9b). The **interior** of R is the set of interior points of R. The **boundary** of R is the set of boundary points of R.

A region is open if it consists entirely of interior points. A region is closed if it contains its entire boundary.

Interior points and boundary points of a region in space. As with regions in the plane, a boundary point need not belong to the space region *R*.

Exercises:

Exercises: 4,6,8,10, 14, 18, 24, 30.

Homework: 2,5,12,20,22,28,29.